
Evolution of Fuzzy Rule Based Classifiers

Jonatan Gomez

Universidad Nacional de Colombia and The University of Memphis
jgomezpe@unal.edu.co, jgomez@memphis.edu

Abstract. The paper presents an evolutionary approach for generating
fuzzy rule based classifier. First, a classification problem is divided into
several two-class problems following a fuzzy unordered class binarization
scheme; next, a fuzzy rule is evolved (not only the condition but the
fuzzy sets are evolved (tuned) too) for each two-class problem using a
Michigan iterative learning approach; finally, the evolved fuzzy rules
are integrated using the fuzzy round robin class binarization scheme. In
particular, heaps encoding scheme is used for evolving the fuzzy rules
along with a set of special genetic operators (variable length crossover,
gene addition and gene deletion). Experiments are conducted with
different public available data sets.

Keywords: Fuzzy Rule Evolution, Fuzzy Set Tuning, Evolutionary Al-
gorithm, Fuzzy Class Binarization

1 Introduction

Classification is a supervised learning technique that takes labeled data samples
and generates a model (classifier) that classifies new data samples in different
predefined groups or classes [1]. Classification has been extensively studied in
machine learning and data mining [1,2,3], and has received particular atten-
tion of soft-computing techniques such as fuzzy Logic [4,5,6] and evolutionary
algorithms [7,8,9]. Due to high interpretability of fuzzy rule based classifiers
(FRBC) and the ability of evolutionary algorithms (EA) to find good soluti-
ons, some research work has focused on developing evolutionary techniques for
generating FRBC [10,11,7,12,6,9]. These techniques receive the name of Genetic
Fuzzy Rule Based Systems (GFRBS) [13,14]. Of several GFRBS approaches
proposed, all of them differ from each other in at least one of the following as-
pects: number of fuzzy rules that each individual encodes, type of rule expression
encoded by an individual, and scope of the evolutionary process [10,15,13].

1.1 Michigan and Pittsburgh

According to the number of crisp/fuzzy rules that each individual of the po-
pulation encodes, GFRBS can be divided in two broad approaches: Pittsburgh
and Michigan. Each one has its advantages and disadvantages [15]. In the Pitts-
burgh approach, each individual of the population encodes a set of rules that
will compose the RBC [16,17,18]. It is possible to capture the rules interaction

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1150–1161, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Evolution of Fuzzy Rule Based Classifiers 1151

in the fitness function but the search space grows exponentially with respect to
the number of rules encoded. In the Michigan approach, each individual of the
population encodes one rule [19,20]. Although the search space is small compa-
red with the Pittsburgh approach, only one rule is encoded, it is not possible to
capture the rule interactions in the fitness function [15]. Michigan approaches
are further divided in two groups: simple and iterative learning. In the simple
approach, all the rules are evolved using a single EA run. It is done by introdu-
cing a niching strategy in the EA [21,22,23]. In the iterative learning approach,
the set of rules is evolved in several runs of an EA - a rule is evolved in each run
[12,7,6]. The number of EA runs, the type of rule evolved and the mechanism
used for combining such rules depends on the particular approach [15]. Some
approaches penalize rules evolved in previous iterations and stop the iterative
process when the set of rules is adequate [12,6,13,24]. Other approaches run an
EA as many times as the number of classes the problem has, each run with a
different target class [25].

1.2 Rule Encoding

Several fuzzy rule encoding mechanisms have been proposed for GFRBS. Some
of them are:

– Conjunctions of simple terms. The condition length is fixed. It is com-
posed by atomic expressions connected with a fuzzy and logic operator. Such
atomic expressions are the only elements evolved [11,7,12,6,9].

– Fixed condition structure. The condition is determined by a template
where the logic operators and the tree structure are fixed. The atomic con-
ditions are the only elements evolved [8].

– Linear-tree representation with precedence of operators. The tree
structure of the condition is determined by priorities associated with each
logic operator in the condition. Atomic expressions, logic operators and ope-
rator priorities are all evolved [25].

– Heaps or complete binary tree structures. The tree structure of the
condition is always a heap (binary trees filled by levels from left to right).
Atomic expressions and logic operators are evolved [10].

1.3 Evolution Scope

It is possible to use an EA for evolving (tuning) the fuzzy sets membership
functions at the same time the fuzzy rule is evolved [7,26,14]. In [27], Murata
proposes a binary encoding for evolving fuzzy sets in such a way that a bit on
’1’ indicates when a fuzzy set membership has the value 1.0. The closest bits in
on, at the left and right of such bit, indicate that the fuzzy set membership has
value 0.0. In this way, fuzzy sets are encoded along with the fuzzy rule being
evolved. Karr proposed a mechanism for evolving triangular fuzzy sets in [28].
Karr encoded into the chromosome the two control points that define the base of
the triangular fuzzy set. The highest point, the point that will take the maximum
fitness value of 1.0, is defined as the middle point between the evolved control
points. Each control point is encoded independently using a set of m bits.

1152 J. Gomez

This paper provides a fuzzy set tuning mechanism to the heap encoding
scheme proposed by Gomez et al. in [10], simplifies the fitness function, and
uses a fuzzy unordered class binarization scheme to divide a multi-class problem
into several two class problems. This paper is divided in four sections. Section 2
describes the proposed approach: fuzzy rule encoding, fuzzy set tuning mecha-
nism, fitness function and class binarization. Section 3 presents the experiments
performed and the analysis of results. Section 4 draws some conclusions.

2 Proposed Approach

In order to evolve a FRBC, we developed a fuzzy round robin binarization tech-
nique and used an evolutionary algorithm (EA) for evolving a fuzzy rule for each
two-class classification problem (Michigan approach). The EA takes as input the
training data set (preprocessed to represent only two classes), applies the evolu-
tionary strategies, and returns one fuzzy rule. Such a rule has the form : R: IF
condition THEN data is positive. A data sample is classified as positive with
the truth-value (TV) of the fuzzy rule R and classified as negative with TV
equal to the fuzzy negation of the TV of R.

2.1 Fuzzy Unordered Class Binarization

An unordered class binarization transforms an m-class problem into m two-
class problems, where the i -th classifier that is generated using the samples
of class i as positive samples and samples of the other classes (j=1..m, j�=i)
as negative samples [29]. Each classifier is generated using only samples of the
two corresponding classes. Algorithm 1 presents a fuzzy version of unordered
class binarization. This binarization scheme has been successfully applied with
a maximum defuzzyfication technique in [10,30,25].

Algorithm 1 Fuzzy Unordered Classification
Classify(classifier[1..m], sample)
1. winners = ∅
2. for i = 1 to m do
3. winners = winners∪{ µpositive (classifieri , sample) }
4. return Defuzzy(winners)

2.2 Fuzzy Rule Encoding

Because an evolutionary algorithm is executed for each two class problem, and
a single fuzzy rule is the classifier associated to it, it is not necessary to encode
the class that the fuzzy rule is discriminating (it is always the positive class).
Only the fuzzy expression that corresponds with the condition part of the fuzzy
rule is encoded. In this paper, we extend the heap encoding scheme proposed by

Evolution of Fuzzy Rule Based Classifiers 1153

Gomez et al. in [10] by allowing the EA to evolve the fuzzy sets associated with
the atomic conditions. A heap tree is a binary tree that is filled completely on
all the levels except possibly the last level that is filled from left to right [31],
see figure 1.

Fig. 1. Heap.

Gomez et al. [10] shown that it is possible to use a linear structure (indi-
vidual chromosome) for representing such heap expression trees. This structure
is defined as a list of genes, each gene encoding an atomic expression (defined
as fuzzy variable [is/not] fuzzy set) and a logic operator (and or or). The logic
operator encoded in the last gene is not taken into account because the number
of logic operators is one less than the number of atomic expressions, see Figure 2.

Gene1 ... Genen−1 Genen

Atom1 Op1 ... Atomn−1 Opn−1 Atomn *
var ∈ / /∈ set ∧/∨ ... *

Fig. 2. Linear Representation of heaps.

Given a chromosome with n genes, A = a1a2..an, the encoded heap expres-
sion can be obtained using 1.

Tr (a1a2..an) =
{

[λ, atomic (a1) , λ] if n = 1
rep (Tr (a1a2..an−1) , atomic (an) , oper (an)) other case

(1)
Here, rep (T, A, O) replaces the first leaf node of T (using the level tree

enumeration [31]), with the node [firstleaf (T) , O, A].
We use �log2 (m)� bits for encoding m possible attributes, one bit for the

membership relation (∈ / /∈) and one bit for the logic operator (∧/∨). The
number of bits used for representing the fuzzy set depends on the scope of the
evolutionary process; whether it is a fixed fuzzy space or fuzzy set tuning.

1154 J. Gomez

2.3 Fuzzy Set Tuning

Instead of encoding the index of a predefined fuzzy set into each gene as pro-
posed by Gomez et al. in [10] where �log2 (m)� bits are used for representing m
predefined fuzzy sets, a set of parameters defining a fuzzy set can be encoded
into each gene and allow the EA to tune it. Isosceles triangular fuzzy sets can be
tuned by encoding two values, the points defining the base of the triangle [28].
Gaussian shaped fuzzy sets can be defined by encoding two values, the median
and the standard deviation. In this paper, the fuzzy set tuning is restricted to
trapezoidal fuzzy sets defined by two parameters. The attribute space is divided
into m regions of the same length (m is a parameter given by the user). This
division generates m+1 control points, see Figure 3.a. Given two control points,
x and y (x ≤ y), it is possible to define the trapezoidal fuzzy set: (max

{
0, x−1

m

}
,

x
m , y

m , min
{
1, y+1

m

}
), see Figure 3.b1.

(a) Division of the space in m intervals (b) Two control points trapezoid

Fig. 3. Tuning of Trapezoidal membership functions.

Therefore, 2 �log2 (m + 1)� bits are used for representing the two control
points of the trapezoidal fuzzy set.

2.4 Genetic Operators

Variable Length Simple Point Crossover (VLSPX). Given two chro-
mosomes A = a1a2..an and B = b1b2..bm, n and m are the size in bits of
A and B respectively, the VLSPX selects a random point k in the interval
[2, min {n, m} − 1], and generates two offspring C = a1a2..akbk+1..bm and
D = b1b2..bkak+1..an. When PFEs are encoded, it is possible that VLSPX does
not only exchange genes but modifies one of them (if the crossover point is
selected in the middle of such gene).
1 It will define a triangular fuzzy set instead of a trapezoidal if x = y.

Evolution of Fuzzy Rule Based Classifiers 1155

Single Bit Mutation (SBM). Given a chromosome A = a1a2..ak..an, the
SBM produces an offspring by flipping one random bit in it, C = a1a2..ak..an.

Gene Addition (ADD). Given a chromosome A = a1a2..an of n genes, the
ADD operator produces an offspring by generating a random gene r and appen-
ding it to the end of the chromosome: C = a1a2..anr.

Gene Deletion (DEL). Given a chromosome A = a1a2..an of n ≥ 2 genes, the
DEL operator produces an offspring by removing the last of the chromosome,
C = a1a2..an−1.

2.5 Fitness Function

The concept of fuzzy confusion matrix was introduced in [30] in order to deter-
mine the performance of an individual. This section proposes a simplification
of such fitness function that has shown good performance in the classification
problem.

Fuzzy Confusion Matrix. Values in a confusion matrix correspond with the
cardinality of intersection sets. For example, PP is the number of positive sam-
ples that are classified (predicted) as positive, i.e., the cardinality of the set:
Actual-Positive ∩ Predicted-Positive. These values can be calculated by using
the membership function of the data samples to the actual and predicted data
sets as:

PP =
n∑

i=1

µA (di) ∧ µB (di) (2)

PN =
n∑

i=1

µC (di) ∧ µB (di) =
n∑

i=1

µA (di) ∧ µB (di) (3)

NP =
n∑

i=1

µA (di) ∧ µD (di) =
n∑

i=1

µA (di) ∧ µB (di) (4)

NN =
n∑

i=1

µC (di) ∧ µD (di) =
n∑

i=1

µA (di) ∧ µB (di) (5)

Where, n is the number of samples used to test the classifier, A is the actual
(real) positive set, B is the predicted positive set, C is the actual negative set,
D is the predicted negative set, and di is the i -th data record sample in the data
set.

Notice that, for a two-class classification problem, one only needs to know
the membership of a data sample to the actual data set and to the predicted
membership value of the positive set.

1156 J. Gomez

Equations 2, 3, 4 and 5 can be extended to fuzzy sets and fuzzy rules. The
degree of membership of the data sample to the actual positive set is given by
the data sample label and the predicted membership to the positive set is cal-
culated as the truth-value of the condition part of the fuzzy rule. The confusion
matrix generated by using these extensions is called fuzzy confusion matrix.
Performance metrics like accuracy and true positives can be generated from
the fuzzy confusion matrix. Such new performance metrics will be called fuzzy
performance metrics: (fuzzy accuracy, fuzzy true positives, etc).

Definition. Since the goal of the evolutionary process is to generate a simple
fuzzy rule that can discriminate the positive class from the negative, the fitness of
an individual is defined by the fuzzy accuracy (FAC), and the fuzzy rule length
(FRL), i.e. the number of atomic conditions defining the fuzzy rule. In this
way, the optimization problem is a two-goal objective function: maximizing the
FAC while minimizing the fuzzy rule length (FRL). Although there are several
ways to deal with multi-goal objective functions, in this work, the weighted sum
technique was used. Therefore, the fitness of an individual is calculated using
equation 6.

fitness(R) = w ∗ FAC(R) + (1 − w) ∗
(
1 − FRL(R)

M

)
= w ∗

(
PP (R)+NN(R)

PP (R)+PN(R)+NP (R)+NN(R)

)
+ (1 − w) ∗

(
1 − FRL(R)

M

)
(6)

Here, w is the weight associated with the fuzzy accuracy reached by the
individual and M is the maximum number of atomic expressions defining a
fuzzy rule.

2.6 Rule Extraction

The best individual of the population, according to the fitness value, will deter-
mine the fuzzy rule that will be used for discriminating between the two classes
under consideration.

3 Experimentation

3.1 Experimental Settings

Five benchmark data sets (publically available), were used as a test bed. See
table 1. A 10-fold cross-validation was applied to each data set 5 different times.
The reported results are the average over those 50 runs.

For each data set, we used the Hybrid Adaptive Evolutionary Algorithm
(HaEa) proposed by Gomez [32] as the two-class evolutionary algorithm (which
evolves the fuzzy rule associated with each two-class problem) . HaEa adapts
the genetic operator rates while evolves the solution of the problem. HaEa was
executed for 100 iterations using 100 individuals as population and VLSPX,

Evolution of Fuzzy Rule Based Classifiers 1157

Table 1. Test bed

DATA SET CLASSES DIM SAMPLES
TOTAL PER CLASS

BREAST 2 9 699 {458, 241}
PIMA 2 8 768 {500, 268}

HEART 2 13 270 {150,120}
IRIS 3 4 150 {50, 50, 50}

WINE 3 13 178 {59, 71,4 8}

SBM, ADD and DEL as genetic operators. Individuals of the initial population
were randomly generated with a length varying between 1 and the number of
attributes defining the data set (9 for Breast, 8 for Pima and 13 for Heart). A
10 fold cross-validation technique was applied to each data set 5 different times.
The reported results are the average over those 50 runs. We used the average-and
(TV (p ∧ q) = 2∗TV (p)∗TV (q)

TV (p)+TV (q)) as fuzzy and operator2, max as fuzzy or operator,
and 1.0 − x as fuzzy not operator. We compared the performance of the fuzzy
rules evolved using the fuzzy set tuning mechanism (with 6 divisions) against the
fuzzy rules evolved using a fixed collection of 5 well tuned fuzzy sets, as shown
in figure 4. We set the number of division to 6 in order to match the division
generated using the 5 predefined fuzzy sets.

Fig. 4. Fixed Collection of Fuzzy Sets

3.2 Results and Analysis

Comparing fuzzy sets tuning against fixed fuzzy sets. Table 2 shows the
performance of the fixed and tuning fuzzy sets approach.

2 The average-and fuzzy logic operator produced better results than the min-and
operator.

1158 J. Gomez

Table 2. Performance of fuzzy set tuning against fixed fuzzy sets.

PRE-DEFINED TUNING
BREAST 94.94±2.71 94.85±2.41

PIMA 73.79±5.75 74.21±5.63
HEART 78.44±7.79 78.96±8.26

IRIS 94.51±4.83 95.20±5.97
WINE 92.78±6.13 93.18±6.72

As shown, the performance reached by the proposed approach using tuning of
fuzzy sets is better than the performance reached using a predefined collection of
fuzzy sets in almost all the data sets (exception done with the Breast data set).
These results indicate that the tuning mechanism can evolve fuzzy sets that
approximate patterns hidden in the data set. Take for example the following
fuzzy rule generated for the Pima data set in a sample run:

IF x8 is set2,3 AND x1 is set0,1 OR x2 is not set0,4 THEN Diabetes-Disease

Here, setx,y represents the trapezoidal fuzzy set:

(max
{
0, x−1

m

}
, x

m , y
m , min

{
1, y+1

m

}
)

with m being the number of divisions. In order to approximate the atomic
expression x8 is set2,3 using a collection of predefined fuzzy sets, it will require
other type of fuzzy or logic operator, like Restricted-Sum Or, and the condition
x8 is ML OR x8 is M .

Fuzzy Rule Complexity. Figure 5 shows the evolution of the fuzzy rule length
for both the best individual in the population and the average length of indi-
viduals in the population. Clearly, our approach using the tuning mechanism
produces simple fuzzy rules as no more than 4 attributes are included in the
condition part of the fuzzy rules.

Comparison with Results Reported in the Literature. We took the re-
sults produced by our approach, Tuning of fuzzy sets with Heaps encoding (T-
HEAP), and compared them against results reported in the literature. See table
33. As shown, our results (first row) compare well4

3 Results reported for QDA, LDA, C4.5, kNN, SSV and FSM taken from [33]. Results
for GAP taken from [27], where the number of fuzzy rules was close to the number
of classes. Results for CTree are taken from [10].

4 Although all of these results were obtained with different statistical validation me-
thods (leave-one-out, or 10-cross-validation) or not statistical validation, the values
reported here are an indicative of the performance of the proposed approach.

Evolution of Fuzzy Rule Based Classifiers 1159

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

F
uz

zy
 R

ul
e

Le
ng

th

Generation

Best
Average

(a)

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

F
uz

zy
 R

ul
e

Le
ng

th
Generation

Best
Average

(b)

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

F
uz

zy
 R

ul
e

Le
ng

th

Generation

Best
Average

(c)

Fig. 5. Fuzzy Rule Length Evolution. (a) BREAST, (b) PIMA, (c) HEART.

Table 3. Comparative performance of the proposed approach

Method BREAST PIMA HEART WINE Statistical Test
T-HEAPS 94.85 74.21 78.96 93.18 10-cross-validation

QDA 94.90 74.80 57.80 99.40 Leave-one-out
LDA 96.00 77.20 60.40 98.90 Leave-one-out

GAP-sel - - - 97.20 None
GAP-par - - - 93.30 None

C4.5 94.70 73.00 22.90 - Leave-one-out
kNN 96.90 71.90 65.60 95.50 Leave-one-out
SSV 96.30 73.70 - 98.30 10-cross-validation
FSM 96.90 - - 96.10 10-cross-validation
WM 87.10 71.30 - - -
GIL 90.10 73.10 - - -
ABD 96.00 75.90 - - -
ABA 95.10 74.80 - - random (50-50)%

4 Conclusions

We proposed a technique for evolving fuzzy rules that follows an iterative Michi-
gan approach. The iterative process is performed using a fuzzy unordered class
binarization scheme. A fuzzy set tuning mechanism was developed for the Heaps
encoding strategy proposed by Gomez et al. in [10]. Also, a simplified fitness fun-
ction was introduced. The results obtained indicate that the proposed approach
is able to evolve good fuzzy rule based classifiers. In general, the quality of such
evolved classifiers is higher when the fuzzy set tuning scheme was included in
the evolutionary process.

1160 J. Gomez

References

1. J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2000.

2. R. S. Michalski, I. Bratko, and M. Kubat, Machine Learning and Data Mining:
Methods and Applications. J. Wiley & Sons, 1998.

3. R. Holte, “Very simple classification rules perform well in most common used
datasets,” Machine Learning, no. 11, pp. 63–91, 1993.

4. Y.-C. Hu, R.-S. Chen, and T. G-H., “Finding fuzzy classification rules using data
mining techniques,” Pattern Recognition Letters, no. 24, pp. 509–519, 2003.

5. Q. Shen and A. Chouchoulas, “A rough-fuzzy approach for generating classification
rules,” Pattern Recognition, no. 35, pp. 2425–2438, 2002.

6. A. Gonzalez and R. Prez, “Completeness and consistency conditions for learning
fuzzy rules,” Fuzzy Sets and Systems, no. 96, pp. 37–51, 1998.

7. H. Ishibushi and T. Nakashima, “Liguistic rule extraction by genetics-based ma-
chine learning,” in Proceedings of the Genetic and Evolutionary Computation Con-
ference GECCO’00, pp. 195–202, 2000.

8. A. Giordana and L. Saitta, “Regal: An integrated system for learning relations
using genetic algorithms,” in Proceedings of the Second International Workshop on
Multi-strategy Learning, pp. 234–249, 1993.

9. K. De Jong and W. Spears, “Learning concept classification rules using genetic
algorithms,” in Proceedings of the Twelfth International Joint Conference on Ar-
tificial Intelligence, pp. 651–656, 1991.

10. J. Gomez, D. Dasgupta, O. Nasraoui, and F. Gonzalez, “Complete expression trees
for evolving fuzzy classifier systems with genetic algorithms,” in Proceedings of
the North American Fuzzy Information Processing Society Conference NAFIPS-
FLINTS 2002, pp. 469–474, 2002.

11. M. V. Fidelis, H. S. Lopes, and A. A. Freitas, “Discovering comprehensible classifi-
cation rules with a genetic algorithm,” in Proceedings of Congress on Evolutionary
Computation (CEC), pp. 805–810, 2000.

12. J. Liu and J. Kwok, “An extended genetic rule genetic algorithm,” in Proceedings
of Congress on Evolutionary Computation (CEC), pp. 458–263, 2000.

13. O. Cordon, A. Gonzalez, F. Herrera, and R. Perez, “Encouraging cooperation in
the genetic iterative rule learning approach for quality modeling,” in Computing
with Words in Intelligent/Information Systems 2. Applications, J. Kacprzyk, L.
Zadeh (Eds.), Physica-Verlag, 1998.

14. O. Cordon and F. Herrera, “A general study on genetic fuzzy system,” in Genetic
Algorithms in Engineering and Computer Sciences, pp. 33–57, Jonh Wiley and
Sons, 1995.

15. A. A. Freitas, “A survey of evolutionary algorithms for data mining and knowledge
discovering,” in Advances in Evolutionary Computation. A. Ghosh and S. Tsutsui.
(Eds.), Springer-Verlag, 2001.

16. K. De Jong, W. Spears, and D. F. Gordon, “Using genetic algorithms for concept
learning,” Machine Learning Research, no. 13, pp. 161–188, 1993.

17. C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised learning,”
Machine Learning Research, no. 13, pp. 189–228, 1993.

18. S. F. Smith, A Learning System based on Genetic Adaptive Algorithms. Ph. D.
Thesis, University of Pittsburgh, 1980.

19. G. Giordana and F. Neri, “Search-intensive concept induction,” Evolutionary Com-
putation, no. 3(4), pp. 375–416, 1995.

Evolution of Fuzzy Rule Based Classifiers 1161

20. L. Booker, Intelligent Behaviour as an Adaption to the Task Environment. Ph. D.
Thesis, University of Michigan, 1982.

21. S. W. Mahfoud, “Crowding and preselection revisited,” in Proceedings Second Con-
ference Parallel Problem Solving from Nature, 1992.

22. D. Goldberg and J. J. Richardson, “Genetic algorithms with sharing for multimodal
function optimization,” in Proceedings Second International Conference on Genetic
Algorithm, pp. 41–49, 1987.

23. J. H. Holland, Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

24. O. Cordon and F. Herrera, “A three-stage evolutionary process for learning de-
scriptive and approximate fuzzy logic controller knowledge bases,” International
Journal of Approximate Reasoning, no. 17(4), pp. 369–407, 1997.

25. D. Dasgupta and F. Gonzalez, “Evolving complex fuzzy classifier rules using a li-
near tree genetic algorithm,” in Proceedings of the Genetic and Evolutionary Com-
putation Conference GECCO’01, pp. 299–305, 2001.

26. B. Carse, T. Fogarty, and A. Munro, “Evolving fuzzy rule based controllers using
genetic algorithms,” Fuzzy Sets and Systems, no. 80, pp. 273–294, 1996.

27. T. Murata, S. Kawakami, H. Nozawa, M. Gen, and H. Ishibushi, “Three-objective
genetic algorithms for designing compact fuzzy rule-based systems for pattern clas-
sification problems,” in Proceedings of the Genetic and Evolutionary Computation
Conference GECCO’01, pp. 485–492, 2001.

28. C. Karr, “Genetic algorithms for fuzzy controllers,” AI Experts, pp. 26–33, 1991.
29. J. Fürnkranz, “Round robin classification,” Machine Learning Research, no. 2,

pp. 721–747, 2002.
30. J. Gomez and D. Dasgupta, “Evolving fuzzy rules for intrusion detection,” in Pro-

ceedings of the Third Annual IEEE Information Assurance Workshop 2002 Con-
ference, pp. 68–75, 2002.

31. T. Cormer, C. Leiserson, and R. Rivest, Introduction to Algorithms. McGraw Hill,
1990.

32. J. Gomez, “Self adaptation of operator rates in evolutionary algorithms,” in Procee-
dings of the Genetic and Evolutionary Computation Conference (GECCO 2004),
June 2004.

33. D. Wlodzislaw, “Data sets used for classification: Comparison of results,” in
http://www.phys.uni.torun.pl/kmk/projects/datasets.html.

	Introduction
	Michigan and Pittsburgh
	Rule Encoding
	Evolution Scope

	Proposed Approach
	Fuzzy Unordered Class Binarization
	Fuzzy Rule Encoding
	Fuzzy Set Tuning
	Genetic Operators
	Fitness Function
	Rule Extraction

	Experimentation
	Experimental Settings
	Results and Analysis

	Conclusions

